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PREFACE

The research described in this report, "Markov Models For Multiple Bus Mul-
tiprocessor Systems," UCIA-ENG-8203, by Marco Ajmone Marsan and Mario Gerla, was
carried out as part of the Research in Distributed Processing, sponsored by the
Office of Naval Research, Contract No. N00014-79-C-0866 under the direction of A.
Avizienis, Principal Investigator, B. Bussell, M. Ercegovac, M. Gerla, S. Parker and
D. Rennels, Co-Principal Investigators, in the Camputer Science Department, School

of BEngineering and Applied Science, University of California, los Angeles.
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MARKOV MODELS FOR

MULTIPLE BUS MULTIPROCESSOR SYSTEMS

Marco Ajmone Marsan and Mario Gerla

UCIA Camputer Science Department
University of California, Los Angeles

ABSTRACT - Markovian models are developed for the performance analysis of mul-
tiprocessor systems intercammmicating via a set of busses. The performance
index is the average number of active processors, called processing power.
Fran processing power a variety of other performance measures can be derived
as dictated by the specific processor application. Exact models are first in-
troduced, and are illustrated with a simple example. The computational cam-
plexity of the exact models is shown to increase very rapidly with system
size, thus making the exact analysis impractical even for medium size systems.
To overcame the camnplexity of camputation, several approximate models are in-
troduced. The approximate results are caupared with the exact ones and found
tc be surprisingly accurate for a wide range of configurations. Simulation is

used to validate the analytic models and to test their robustness.

This research was supported in part by the Office of Naval Research under con-
tract NOOO14-79-C-0866 and in part by a NATO grant.

M. Ajmone Marsan is currently on leave fram Politecnico di Torino, Istituto di
Elettronica e Telecanmicazioni, Torino, Italy.
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Tightly connected multiprocessor systems are characterized by the pres-
ence of several processing units and one or more cammon memory areas, used by
the processors for the exchange of information and, possibly, the storage of
camon code and data structures of non frequent use. Processors and cammon
memories are connected by same kind of cammmication system, usually called

interconnection network.

Early multiprocessor systems were developed using crossbar networks to
cormnect processors and memories. A widely known crossbar multiprocessor sys-
tem is C.mmp, the Carnegie Mellon multiminicanputer [WULF72]. The performance
of crossbar multiprocessors has been widely analyzed in recent years [BHAN7S,
BASK76, HOOG77, SETH77, WILL78].

#With the availability of inexpensive microprocessors, multiprocessor
systems with a very large nunber of canponents are now becaming feasible and
cost effective. For such systems a crossbar interconnection network may be
irtolerably expensive and in general it would provide a bandwidth much higher
than needed. A more attractive alternative is represented by bus-oriented in-
terconnection networks. Single or multiple bus architectures can be used, ac-
cording to the bamdwidth required for the specific application. These inter-
connection networks are generally called "multiple-~bus" or “highway deficient"
(WILL78] networks. Same papers addressing the analysis of bus systems ap-

peared very recently in the literature [HOEN77, FUNG78, WILL78].




This report presents exact and approximate Markovian models for the
analysis of multiple-bus multiprocessor systems. Section 2 describes the
basic multiprocessor system investigated in this study. In section 3 the
model for performance analysis is presented and the assumptions on system
operations are discussed. Section 4 derives a variety of application~oriented
performance indices . Section 5 provides an exact model for a simple crossbar
architecture. Section 6 discusses exact models for general multibus architec-
tures, whereas section 7 derives some approximate, but camputationally very
efficient models. In section 8 stochastic Petri net models are introduced.
In section 9 exact and approximate analytic results are campared, amd simula-

tion results are presented.




2. THE MILTIPLE PROCESSOR SYSTEM

This study considers multiple processor systems that exchange informa-
tion throwgh a cammon memory which consists of several modules. Processors
and cammon memory modules are connected by a set of “global busses". Each
global bus can connect any processor to any memory module. Every processor is
also connected (and has exclusive access) to a private memory. The block di-
agram of a system with 3 processors, 3 memory modules and 2 busses is shown in

fig. 1.

The exchange of information is accanplished by first writing the infor-
mation in the appropriate common memory module amd then reading it fram the
destination processor. Due to the sharing of both memory modules and busses,
contention may arise, causing processors to queue for a resource which is
currently in use. If the numnber of busses b is greater or equal to the small-
er between the nunber of processors p ard the nunber of memories m, i.e.
b > min(m,p), then the contention is only caused by the sharing of memory
modules. Therefore, a processor can always fimd a free bus to access a free
cammon memory. If, on the other hand, the inequality is not satisfied, a pro-
cessor may be forcad to wait for a memory which is currently free because no

bus is available.

Multiple processor systems for which the inequality holds are usually
known as “crossbar" architectures. Note that in general it is not wise to set
b > min(m,p) unless we want to add some redundancy in the interconnection net-
work for reliability purposes. In fact, the availability of extra busses does

not affect the crossbar system model, nor does it improve its throughput.




M.iltiple processor systems for which the first inequality does not hold
are usually called "highway deficient” systems or "(multiple) bus" architec-
tures (where the word multiple is dropped in the case of b=l1). For these sys-
tems we assune throughout this report that p > m > b. The case m > p can be
analyzed using the same techniques described here; the models are generally

simpler than those presented in this report.

It is possible to construct a queueing network model for the analysis of
both types of systems. The general case is shown in fig. 2. Processors join
memory queues, and before proceeding to service (i.e. accessing memory) they
must be granted a permit (bus). The permit is returned upon campletion of
service. The general model is thus a closed queuweing network with p classes
of customers and with passive resources [CHAN78, KELL76b], which in this case
represerit the busses. In the case of crossbar architectures the presence of
busses can be ignored, thus making the analysis substantially simpler than for

multiple bus systems.
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Fig. 1 - Block diagram of a 3x3x2 system.

T

b PERMITS

{10 ]:m—-_*x
-'ZO\><I!2:D——~A——’O——
Lo N—Aeo-

Fig. 2 - Closed queueirng network mcdel.




Models of multiprocessor systems are developed both to gain a deeper
understanding of their behavior amd to obtain a set of performance indices

that can be used to guide the design of actual systems.

A model cannot include all the details of the system, rather, it is an
abstraction of the real system including the features relevant to the
analysis. Different models are generally constructed, depending on the nature
of the application and the degree of detail required by the study. In our
case, the central feature of the system is the overall processing capability
limitation due to the contention for memories and busses. Our models there-

fore will focus on the loss of processing power due to this contention.

In general we say that a processor can be in one of three different

states:

. (1) The processor can execute in its private memory.

(2) The processor can excharge data with other cooperating processors,

by reading fram, or writing into the cammon memory modules.

(3) The mrocessor can be waiting to access a cammon memory module.

We say that a processor is ACTIVE when it is in state (1), and the goal
of our analysis is to determine the average percentage of time for which pro-

cessors are active.




By introducing an ergodic assumption we can say that the above quantity
is equal to the average number of active processors divided by the total
nunber of processors. Such quantity is usually known in the literature as
Processing Efficiency. As the number of processors is a known constant we can
simply evaluate the average number of active processors, called Processing

Power of the system (P).
P = E [# active processors] (1)

P is the main performance imdex considered in the sequel. Other impor-

tant performance measures are simply related to P, as shown in section 4.

The following assumptions are made regarding the operation of the sys-

tem:

a) Processors perform a background activity that only requires accesses

to the processor's private mamory.

b) Fram time to time processors exchange information, and <thus access

the cammaon memory, performing read/write operations.

'c) The duration of the access to the common memory is an indeperdent,
exponentially distributed randam variable with mean l/pj for the j-th memory
module.

d) when a proc:ssor requires access to a common memory module, a path
is immediately established (with zero delay) between the processor ard the
referenced memory module, provided that a bus is available and the memory is

not being accessed by another processor.

P e




e) If a path cannot be established the processor idles, waiting for the
necessary resource(s) (This may not be true for multiprocessor systems using

an interrupt mechanism. The hypothesis is conservative anyway) .

f) Upon memory access campletion, memory and bus are immediately
released (with zero delay) and the processor resumes its backjround activity.
The interval between subsequent access requests, is an independent, exponen-

tially distributed, randam variable with mean 1 / ,\j for the j-th processor.

g) An access request from processor i is directed to memory j with pro-
bability Pij - Thus, the access rate fram processor i to memory j is defined

a5 \i§7N\iPj§ -

The above assumptions guarantee that a Markovian model can be construct-
ed. Unfortunately, this does not guarantee that a solution (closed form or
nunerical) can then be easily obtained. In particular, suwch models show an
explosion of the number of states when the number of system camponents is in-
creased. The analysis becames rapidly very tedious even for moderately caw-

plex systems.

In order to reduce the number of states we introduce three further as-

sunptions.

h) All rocessors are assumed to have equal cammon memory access rate,
,\, and all menories are assumed to be equal, so that the average memory access

time is the same for all memories and all processors (1/u).




i) A uniform reference model is assumed; this implies that every access
request fram every processor is directed to any memory with equal probability

1/m, where m is the number of cammon memory modules.

1) Wwhen a bus goes idle, the next processor to use the bus is selected

at randam among the heads of the queues referencing memories which have became
free.

In formulae, assumptions h) and i) state that:

'\l_AZ-' _v\p A

p1=u2=,, = = 51 (2)
_1 ¢ s

pij—ﬁ all i,j

'\ij=% all i,j

With these additional assumptions we succeed in performing an exact

analysis of some moderately camplex systems, but still cannot attack very

large problems.

The equal processor access rate assumption in h) was shown to be a con-
servative one in the single bus case [AIMOS0] and is expected so also in the

more general case of multiple busses.

Processors access the cammon memory modules to perform either read or
write operations; we do not distinguish between the two operations in our
models, and do not therefore accomt for the fact that a processor may attempt
to read data which is not present in common memory. This results in the pro-

cessor going idle, with consequent throughput reduction. This feature can be

-10-




included in the markovian model, but the state space is greatly expandéd. A

more system oriented approach can be pursued, by assuning that a fraction d of
the accesses is for write operations and a fraction (1-¢) is for read opera-
tions. A read operation finds the required information with probability q.
Assuning that the access request generation process is not altered by not
finding the desired informmation, the actual t’ime spent in useful canputation
is decreased by a factor (1-g)(1-d¢). Thus, the actual processing power qf the
system is simply obtained by applying the above factor to the computed value
of P. oviously in this case it is necessary to estimate the values of q ard

d, which deperd on many system parameters.

Using all the above assumptions we can now construct a Markov chain to

model the behavior of the systenm.

The state of the Markov chain is defined by the 2p-tuple

(ml, S1r s Sgres el sp) (3)

where:

my is the memory referenced by processor i

S is the state of processor i
m; can take values:
0: processor's private mamory
k: k-th cammon memory module
S; can take values
0: active
j: queweing {j-th in queue) for module my

-1l: accessing cammon memory module m

-N-




This state definition however is not the most convenient fram the compu-
tational point of view. In fact, using the theory of "Lumpable" Markov chains
[KEME60], we may lump equivalent states and obtain a Markov chain of substan-

tially smaller size. The lumping technique is illustrated by an example in

section 5.

The state definition amd the degree of lumpability of the chain depend
on the policy that is used to assign a free bus to a queueing processor. As-
sumption 1) is the most convenient fram the model camplexity point of view,
but might not be the one that yields the best performance. Modifications of

assumption 1) will be briefly discussed in the sequel.

-12-
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4. PERFORMANCE MEASURES

The processing power is not the most appropriate performance index for
same applications. Other parameters could better describe the quality of the
system in same cases. Fortunately, however, many different performance in-

dices can be simply derived fram the processing power.

Define ,\* to be the rate at which custamers cycle through the queueing

network. Fram Little's result we have:
*
A =P\ (4)

Applying again Little's result to the entire memory system including

queues and servers we find the average customer delay D:

D=§E§ (5)

Finally, subtracting fram D the average service time 1/u we have the average

queuveing time W:
=P =P (1+p)
W= EL__?rjtjil— (6)
=
where P i
The average number of queued processors is:
Né =WP\=p- P(l4) (7

therefore the average number of processors accessing cammon memory modules is:

-13-




DW _
NS=W—PP (8)

The average cycle time C is then easily obtained as:

= 1.1_
c-w+x+ﬁ-§% (9)

From the values of average cycle time, average queueing time, average
think time and average service time we can now construct many different per-

formance indices, deperding on the particular application.

If the processors are simply updating a data base, a reasonable perfor-
mance measure could be the ratio of the memory access time to the sum of the
access time plus the waiting time. Using the above results, this performance

index is expressed as follows:

- P
P 1 - P(\+n)

(10)

If, on the other hand, owr multiprocessor system is a packet switch
operating under heavy load conditions, where input processors process packets
and write them into a common memory and output processors read them and again
process them before queueing them for output, then the "think" time represents
the time necessary to process an inconing (outgoing) packet and the service
time represents the time necessary to write (read) a packet fram an input
(output) processor (mote that the exponential read/write time correspords to
exponential packet length distribution). The throughput of the packet switch

can then be expressed as:

-14-




_ P
1ps=,%__2:l (11)

Note that each packet must be processed by an input and an output processor;
both operations require one cycle time, and p packets can be processed simul-

taneously.

Per formance indices for other applications can be constructed in a simi-

lar way.

-15-
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S. CROSSBAR ARCHITECTURES

We begin by presenting as an example the simplest non-trivial case, a
2-processor, 2-Mmemory, 2-bus (2x2x2) system. (Note: the even simpler case of
a single bus structure is trivial, and can be analyzed using an M/M/1 gqueuwe
with finite population. Extensions of the single bus system to different pro-

cessor access rates and general service distributions are found in [AIMOB0]).

A px2x2 system is a crossbar multiprocessor and can thus be studied as a
closed queueing network with p classes of customers. Due to the assumptions
introduced the solution can be obtained by application of the product form
solution [BASK75]. We shall nevertheless construct a Markov chain model, as

explained before, to provide a first simple example.
The state definition is in the case of a 2x2x2 system

(ml, Spr My, 52) (12)

and the Markov chain that we obtain using assumptions a) through g) is shown
in fig. 3a. In this case no lumping is possible. However, if we add assump-

tions h) through 1) the transition rates are modified as shown in fig. 3b.

We can apply the lumping technique to this Markov chain by defining mac-

rostates as follows:

(00) = [(0000)]

(-10) = ([(1-100),(2-100),(001-1),(002-1)]

(-11) = [(1-111),(2-121),(111-1),(212-1)] )
(-1-1) = [(1-12-1),(2-11-1)] (13)

The lumped chain is shown in fig. 4.

-16-




Fig. 3 - Markov chains for the 2x2x2 system:

a - assumptions a throwh g,
b - assumptions a through 1.

-17-
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Steady state probabilities for the chain in fig. 4 are now very easily

evaluated, yielding:
P(-10) = 2p p(00)
p(-11) = p? P(00)
P(-1-1) = 3 p? P(00) (14)
P(00) = [1 + 2p + 3 p?7L

o=d

M

The processing power P, defined as the average number of active processors is

obtained as:
= = 3 .24-1
P =2 P(00) + P(-10) = 2(14p) [1 + 2p + 5 p°) (15)

As soon as we increase by one the number of processors we realize that
the general description is not practical. We have 49 states in this case,

that we can lunp to 6 macrostates as shown in fig. 5.
The processing power is now obtained as:
P = 3 P(000) + 2 P(-100) + P(-101) + P(-1-10) (16)

In the same manner we get the lumped chain in the case of four proces-

sors that is shown in fig. 6.

In this case we see that in the lumped chain we have two states with two
processors accessing the canmon memory and two processors in queue. State a

is such that both processors queue for the same memory and state b is such

-18-
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Fig. 4 - Lumped Markov chain for the 2x2x2 system.

Fig. 5 - Lumped Markov chain for the 3x2x2 systeanm.

-19-




Fig. 6 - Lumped Markov chain for the 4x2x2 system.

-20-




that the two processors queue for different memories.
The state definition for the lumped chain in the px2x2 case is:

’ n >
(nm’ nq1 nqz) q, 2 nqz 17

where
n is the number of processors currently accessing a cammon memory

nq is the number of processors queueing for the memory with the longest
1

queues
nq is the number of processors queueing for the second cammon menory
2

currently accessed (set to zero if only one memory is used).

In the case of a px2x2 system we are not interested in the policy followed to
choose the next processor to be served when a bus becames available: the only
thing that can be done is to pick one of the processsors queueing for the
memory that has became available (This is true in general for any crossbar ar-
chiteciare). The fact that we choose the first in the queue is irrelevant for

the evaluation of the processing power.

We can now draw the lumped chain in the general case of a px2x2 system

(Fig. 7). The number of states of the lumped chain, N, can be evaluated as:

+p+% p odd
(18)

The number of active processors associated to each state is:

-21-




Fig. 7 - Lumped Markov chain for the m2x2 system,

-22-
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pfnm-nq—n (19)

and thus the evaluation of the processing power is straighforward, once the
steady state probabilities associated to the states of the Markov chain are

evalwated.

In the case of a 3 memory, 3 bus system the state of the lumped Markov

chain is defined as:

(nm, nql, nqz,nq3) , n_>n_ >n (20)
where

n. nql, nq2 are defined as before
nq is the number of processors queueing for the third cammon memory
3

currently accessed.

The lunped chain that we obtain is now shown in fig. 8. The transition

rates between the states are not shown, but can be easily evaluated.

In the general case of p processors, m memories and m busses (p > m) the

state of the lumped chain is defined by the (m+l)-tuple

(n

m, nql"'°'n ) , D >n .2 N (21)

I Q- BT T G

and the definition of the entries is a straightforward extension of the previ-

Oous case.

The structure of the Markov chain is the same as in fig. 8 up to level

3, then more states must be considered.

-23-







We can express in the general case the transit;ion rates between two
states, provided that we specify more precisely the state of the Markov chain.
Given a state as in (21), the entries nq. must be arranged in decreasing

i
order. We will then have same groups of adjacent entries with the same value.
All the entries of the state can at most increase or decrease by one

it at a time. Only one entry can change at a time.

Given a group of entries n yese, N , all with the same value,

, n
% %K WK+
only the first entry of the group can increase by one wnit, and only the last

entry can decrease by one unit. In this manner we are sure to preserve the

entries in decreasing order.
Qonsider now a state
(i, q]_, qz P ooy %) (22)

this state can evolve into at most 2{mtl) other states, which are identified

by the following transitions:

i=--> i+l
i-->i-1 i»0

(23)
g —> qk+l Q) first entry of a group

qj _—> qj-l qj last entry of a group, Qj>0

The rates associated to each of these transitions are:

-25-
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P\ i=0
R(i -> i+l) =

{p-n) (m-1) 'r\ﬁ O<i<m , n<p

Rlg - qtl) = iEm'ﬁ 1\ i<m, n<p, k<i
R(i -> i-1) = (i-s) m i-1>s

R(qj -> qj—l) =1la j<i

where:

i
n=1i+ 3
k=1qk

|
([

# of entries C T CYRRRYE 1] that have the same
value of qj (including qj itsel f)

s = # of nonzero entries ST VURERY £

(242)

(24b)

(24¢c)

(244)

(25)

The number of active processors, associated to each state is simply p-n;

it

the steady state probability distribution of the Markov chain.

-26-

is thus very easy to obtain the processing power, once we have solved for

) E——




6. MILTIBUS ARCHITECTURES: EXACT MODELS

For miltiple bus architectures, the complexity of the Markov chains is

much larger then for crossbar, even when lumping is used. Therefore we can

hardle only moderately canplex systems using the exact state description. For

the most general case we must resort to approximate models.

The state definition for the exact lumped chain in the case of a multi-

ple bus system is:

(e Qyr Ay v evesr Q) (26)

where

n is the number of processors currently accessing a cammon memory

Qreeer G are the nunbers of processors dqueueing for the menories

currently accessed, arranged in decreasing order

Gppyececr Gy are the numbers of processors queueing for a free memory,
not accessible because no bus is available, arranged in decreasing ord-

er.

Some examples of lumped Markov chains are given in figs. 9 through 13,

for 3x3x2, 4x3x2, 5x3x2, 4x4x2 and 4x4x3 systems, respectively.

Note that an increase in the number of processors ard/or memories can-
plicates the Markov chain, whereas an increase in the number of busses tends
to simplify the Markovian representation. This is due to the fact that the

presence of a higher number of busses makes the system more similar to a

~27-~
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crossbar, and thus reduces the number of possible queweing situations.

When the number of busses is just one less than the nuuber of proces-
sors, the policy for the choice of the next processor to be served is ir-
relevant. In the other cases the Markov chain deperds on such policy. Oon-
sider for instance a 4x3x2 system where the next processor served is the one
that has been waiting longest. In this case the Markov chain is the one shown
in fig. 14, where an asterisk is added to indicate which custamer has priori-
ty. In general, modifications of assumption 1) require that more information
about the state of the system queues is recorded in the Markov chain state
description. The resulting chains may thus be much more camplex than those

obtained using assumption 1).

The general pxmxb case is not easy to handle, even after lumping is ap-
plied. We will therefore introduce in the next section saome approximations
which further reduce the size of the Markov chain and permit us to attack the

most general case.

-28-




Fig. 10 - Lumped Markov chain for the 4x3x2 system.
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Fig. 12 - Lumped Markov chain for the 4x4x2 system.
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Fig. 14 - Lumped Markov chain for the 4x3x2 system

using a FCFS discipline.
-31-
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7. MILTIBUS ARCHITECTURES: APPROXIMATE MODELS

The reason for the introduction of approximate Markovian models is that,
for general multibus systems, the number of states increases very rapidly with
system size. The explosive growth is due to the detailed information that the
states must record about the queues inside the system. In particular for each
state of the Markov chain the number of customers queued for all cammon memory
modules must be recorded. That is, we not only need to know the number of the
queued customers, but also must be concerned with all the possible ways of
distributing these custamers among the system queues. If we reduce the amount
of information about the status of the queues we have no longer a first order
Markov chain behavior in the evolution of the system through the state space.
The approximate Markov models that we introduce in this section analyze the
system behavior ™ by assuming that the transitions between the states with re-
duced queweing information still satisfy the Markov property. The results
that we will obtain in this way are approximate and must then be campared to

the exact ones to test their accuracy.

In order to define a simplified model, one needs to specify:

a) the state definition, that is the amount of information used to
describe the state of the Markov chain. As was mentioned before we will use

reduced information about the queues in the system.

b) the method to calculate the transition rates for the simplified Mar-
kov model. As the behavior is approximated by the simplified Markov chain the

transition rates must be evaluated according to some empirical rule, amd

-32-




several different rules can be envisioned.

Three different state definitions (named A, B and C) and two heuristic
methods for the evaluation of the transition rates (named 1 and 2) were con-
sidered. The approximate models are named using the letter referring to the
state description and the number referring to the evaluation of the transition

rates.

Let us first begin with a very simple model:

Model Al - The state of the system is simply represented by the to-
tal nunber of processors waiting either for a busy memory or for a
busy bus, and by the number of processors currently accessing a can-

man memory module. We thus have a pair

(nm, nq) (27)
where
n.= # of processors in service
n, = # of processors queued

The transition rates are evaluated by assuming that each active pro-
cessor can request any memory module with the same probability (uni-
form reference model). Furthermore, each queued processor is as-
suned to request, with uniform mrobability, any of the cammon menory
modules currently not accessible (this approximation implies that a
queued processor can rardamly reselect a new memory when a memory or 1

bus becanes unblocked) .
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If we apply this approximation to the 2x2x2 system and to the 3xX2x2 sys-
tem we find again the exact (lumped) chains. In other words, the above as-
sunptions are automatically verified in such small systems, and therefore no

approximation is introduced.

Qonsider now a 4x2x2 system: in this case we have two states in which
two processors are dqueued. Our approximate chain will consider these two
states as a single one. Note, however, that the merging violates the condi-
tions for 1lunping. Some error will, therefore, appear in the results due to

such "prohibited" lumping. The chain that we get is shown in fig. 15.

This approximation can be extended very easily to the px2x2 system, and
the resulting chain is shown in fig. 16. The number of states N is in this

case only twice the number of processors.

To illustrate the rate camputation, consider states (2,p-2) amd (1,p-2).
The rate fram (2,p-2) to (1,p-2) is evaluated by multiplying the rate out of
state (2,p-2), which is 2u, by the probability that none of the p-2 queueing
processors 1is referencing the memory that becames free. Such probability is

(1/2)P2,

Carrying out the analysis for the most general case, we find that the
pxixb system is represented by a Markov chain with b vertical chains (see fig.

17) and a total number of states N, where:
N=1 +b[p+% (1-b)3 (28)

A simple upper bound on N is N < pb + 1.
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Fig. 15 - Chain of the 4x2x2 system with the approximate model Al.
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Fig. 16 -~ Chain of the px2x2 system with the approximate model Al.
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Fig. 17 - Chain of the pxmxb system with the approximate model Al.
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The transition rates can be explicitly written for the most general
case. Their derivation is reported in apperdix 1. Since the number of active
processors is p-i-j, the processing power can be simply evaluated once the

steady state distribution of the Markov chain is known.

Next we introduce a modification of model Al, by specifying a different

method for the calculation of the transition rates:

Model A2 - The state of the system is defined as in model Al). The

transition rates are evaluated using an "averaging" technique.
We describe the model A2 using a 3x3x2 system as an example.

The exact lumped chain for the 3x3x2 system is shown in fig. 9. Using
owr approximation, the states (2100) and (2001) are merged into state (2,1),
even if this violates the lumping conditions. In the approximate chain all
the transition rates are uncharged, except for those in and out of state
(2,1). Namely, +he rates into state (2,1) are obtained by adding the rates
into the two merged states. The rates out of state (2,1) are obtained by not-
ing that the total rate out must be 21, ard that the rate out of the two
merged states is u towards state (1,1) and a#2u towards state (2,0). We thus
average the rate out of state (2,1), keeping the same ratio. The resulting

chain is shown in fig. 18.

Note that no error is made in the approximation if the merged states
have equal steady state probability. Otherwise the resulting chain only ap-

proximates the exact one.

-38-




Fig. 18 - Chain of the 3x3x2 system with the approximate model A2.
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The px2x2 system, using this approximation, is represented by the chain
of fig. 19.

The more general case of p processors, m-mamories, 2 busses can still be
hardled, provided that we solve the cambinatorial problem of counting the
nunber of states at each level of the exact lumped chain. The level of the
state is defined as the sun of the number of processors accessing cammon
memory and the number of queued processors. There is only one state at levels
0 ard 1, and there are two states at level 2. For levels larger than two we
have one state with n =1 and n(m,2,k) states with n=2. The expression of
n{m,2,k) is derived in apperdix 2. The approximate chain in the case of a

pxmx2 system is shown in fig. 20.

The extension to the general pxmxb system with an arbitrary number of
busses, requires the counting of the states at each level of a more camplex

Markov chain, and the corresponding evaluation of new transition rates.

J
We now consider another definition of system state (yet retaining the

rate camputation rule of model A2):

Model B2 - The state of the system is represented by the following
triplet: (1) the number of processors accessing a cammon memory
module; (2) the total number of processors waiting either for a busy
memory or for a busy bus; and (3) a flag which is set to zero when
no processor is queued for a bus, and is set to one when one or more
processors are queued for a bus in order to access a free cammmon

memory module.

-40-




dl

[P/2] = INTEGER < &

Fig. 19 - Chain of the px2x2 system with the approximate model A2.
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Fig. 20 - Chain of the pxmx2 system with the approximate model A2.
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Namely, the state is defined by the triplet

(n., Nyr f) (29)

n, = # of processors accessing coumon memory
nq = # of queueing processors
f flag: 0 1o queue for a bus

1 one or more processors are queued for a bus

The transition rates are evaluated using the averaging technique

described in the approximation A2.

Clearly, model B2 is a refinement of A2, since the state is improved by

adding a binary informmation concerning the system queues.

We immediately recognize that for crossbar architectures the B2 approxi-
mation is the same as the A2 approximation, since the flag is always zero (mo

wait for a bus).

Oonsider now a 4x3x2 system: the approximate chain is shown in fig. 2l1.
If we camnpare thi- chain with the exact lumped chain of fig. 10, we see that
four states have been merged into two, violating the lumpability conditions.
The new transition rates are canputed using the averaging technique. The ap-

proximate Markov chain for a 5x3x2 system is shown in fig. 22.

The general pxmx2 case can be managed by using the cawbinatorial results

of appendix 2. The resulting chain is shown in fig. 23. The total number of

states is in this case
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Fig. 22 - Chain of the 5x3x2 system with the approximate model B2.
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Fig. 23 - Chain of the pxmx2 system with the approximate model B2.
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N = 3(p-1)+1 (30)

As an example the px3x2 chain is shown in fig. 24. In this particular

case the canbinatorial results can be put in polynomial form (see apperdix 2).

The nunber of active processors asgociated to each state is p—nm-nq,
thus the processing power can be easily canputed, once the steady state pro-

bability distribution of the chain is known.

All the preceding approximate models lack of one feature which is very
desirable in all analytic models: namely, a closed form solution. We intro-
duce here the simplest possible model, which provides us with a closed form

golution.

Model C2 - The system state is simply the nunber of active proces-
sors: no account is kept of the state of internal queues. The tran—

sition rates are evaluated using the averaging technique.

The transition diagram in the case of a pxmx2 system is shown in fig.
25. We have reduced the system description to a birth and death Markov chain,
whose solution is easily obtained: denote by w(i) the steady state probability

of state i, then

oy - I\Nlp-i p! 1
et 3% e
(31)
p1 32 (17t
mp) = |1+ 3 |AMPIRL TRy
ol *=0 I

with
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Fig. 24 - Chain of the px3x2 system with the approximate model B2.
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Fig. 25 - Chain of the pxmx2 system with the approximate model C2.
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_2n{m2,i) +1
Yi= Sm AT (32)

where n(m,2,1i) is defined in apperdix 2. The processing power can then be ex-

pressed as:

. i-2
IAlp-i - 1
e a wor &%
P=2 1 | - P32 |
ey 'NIHEIT m oy (33)
o '8l I g K

The general pxmxb case can also be solved. The resulting Markov chain

is shown in fig. 26. The steady state probabilities are in this case:

. _ I\lpipt BY o
mi) =5 %k‘l“l B m(p) (34a)
N =R
np) =1+ 5 |IMPIR T gl
2o il %1@1 B 1 (34b)
where:
b-1 i-b
3 jps(i) +b 3 } Pp(3*+D) B,y (i-2b-j+m) }
p. = Pl j=0 i>1
i b-1 i-_-bl | ¢
2 Pj(l) + 3 | Pp(3*b) By i-2b-J+m) | (35)
Fl F0
and p, (j) is defined in appendix 2.
The expression of the processing power P is then as follows:
INlp-i _pl Tﬂl -1
p lal 0T 5 P
P= p-1 | =3 1
Thies 1RPOE W oR (36)
=0 | S| i
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Fig. 26 - Chain of the pxmxb system with the approximate model C2.
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8. STOCHASTIC PETRI NET MODELS

Petri net models and derivations thereof [PETR66, HOLT68, HOLT70,
PETR73] have been introduced by several authors for the modeling of camputer
systems [NOE71, NUTT72, NOE73, KELL76b, PETE77, AGER79, SHAP79]. Although in
standard Petri nets no measure of time is considered (only a partial ordering
of the occurrences of events is established), same of the models presented in
the literature allow a measure of the flow of time by introducing the concept
of transition times. Transition times are assuned to be deterministic, even
in the Randan Petri net models introduced by Shapiro [SHAP79]. Molloy
[MOLLBO] first introduced the idea of randaom transiton times, by allowing them
to be exponentially distributed rardam variables. We show in this section how
such models can be used to describe the behavior of multiple bus multiproces-
sor systems and to obtain the Markovian models discussed in the previous sec—

tions.

For an introduction to Petri nets the reader is referred to the tutorial

papers by Peterson and Agerwala [PETE77, AGER79].

Following [AGER79] we define a Petri net (PN) to be represented by a

bipartite, directed graph: BN = (T,P,A), where:

T

{t),ty, ..t} is a set of transitions
P= {pl,pz, .../py} 1is a set of places

A < {rxPluipxT} is a set of directed arcs (37)

The set { T UP } forms the set of nodes of the Petri net.
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The dynamic properties of the PN can be studied by analyzing the move-
ments of tokens inside the net. A PN with tokens is a marked Petri net MPN =
(T,P,A,M). A marking M of a PN assigns tokens to places; M can be viewed as a
vector whose i-th canponent represents the number of tokens assigned to the

i-th place p;. A marking can also be viewed as a mapping fram the set of

places P to the natural numbers I:

M:P-—>1
M= Uy eenn ) (38)

It is caownon practice to represent places by circles, transitions by

bars and tokens by black dots. A simple Petri net is shown in fig. 27.
For a given transition t we define the set of input places I(t) as:

1) ={pl (p,t) <A} (39)

in a similar manner the set of output places is defined as:

ot) ={pl (t,p) <A} (40)

A transition is enabled if the marking M of the Petri net is such that:

M(p) > 0 all p < I(t) (41)
Enabled transitions can fire thus removing one token fram each input place and
putting one token in each output place. The firing of a transition alters the
marking of the PN and may then enable other transitions. The dynamic behavior

of the Petri net can thus be investigated studying the sequences of markings

produced by firing the transitions.

Standard Petri net models do not consider time as a parameter of the

net; the firing of a transition is assumed to be instantaneous. Modified
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models (see for instance the E-net models [NUTT72, NOE73]) allow the introduc-
tion of fixed transition times. With stochastic Petri nets the transition
times are assumed to be exponentially distributed randam variables (possibly
with zero mean, thus accounting for immediate transitions). More precisely,
the time that elapses between the enabling and the firing of a transition is
an exponeutially distributed ramdam variable; the firing time is still assumed

to be zero, thus in the case of two conflicting transitions the firing of one

disables the other.

A continwus time stochastic Petri net (SPN) is thus an extension of the

standard Petri net:

SPN = (p,T,A,M,8) (42)

where & is the set of the transition rates associated +o each transition:

6= (8.6, .0018,) (43)

A discrete time SEN can also be introduced, by considering geametrically

distributed transition times [MOLIS0].

Petri nets are useful in modeling asynchronous concurrent activities in
real systems. We can attach a physical interpretation to markings and transi-
tions: a marking can represent the state of the system and a transition can
represent an event which modifies the system state. onsider for example the
very simple system of fig. 28: two processors access an external coammon
memory. The behavior of this system can be represented by the BN of fig. 27,

by giving the following interpretation to places and transitions:
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Fig. 27 - A simple Petri net.

COMMON
MEMORY

P Y

bbb

PROCESSOR 1 PROCESSOR 2

Fig. 28 - Two—processor system.
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p, Pprocessor 1 active
P, processor 1 accessing cammon memory
P3 bus available
p, Processor 2 active
Py processor 2 accessing cammon menory
processor 1 seizes the bus
processor 1 releases the bus
t3 processor 2 releases the bus
t, processor 2 seizes the bus
With this model we reprezent the possible conflicts in access requests, but do
not explicitly model the queueing of a processor in order to access the cammon
memory. This feature can be obtained by adding two places and two transitions

to the net as shown in fig. 29. The interpretation of the added nodes is:

Pg Processor 1 queued

Py processor 2 queued

tg processor 1 issues a request

t_ processor 2 issues a request
The marking shown in the figures indicates the initial state of the system.
In order to obtain the full definition of the stochastic Petri net we must as-

sociate a rate with each transition. Using the same notation as in section 3

we have:
61 = 64 = oo immediate transition
62 = 63 = 5 manory access campletion rate
65 =N access rate of processor 1
66 = ,\2 access rate of processor 2 (44)
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The analysis of Petri net models is usually based on the properties of
the reachability set associated to the PN. The Rechability set of a PN is the
set of all markings reachable fram the initial marking M. A marking M' is im~

mediately reachable fran M if it can be obtained fran M by firing some enabled

transition. A marking M' is reachable fram M if it is immediately reachable
fram M or if it is reachable fram any marking immediately reachable fram M.
The reachability set of the SPN of fig. 29 is easily obtained, ard it is shown
in fig. 30. Marking 8 is somewhat different fram all the others, as it is ob-
tained from markings 2 and by firing a finite rate transition before an im-

mediate transition. Marking 8 is therefore reachable with probability zero.

The number of tokens in any place can be at most one for all markings.
This means that the SN is safe. A place in a PN is said to be safe, if it
contains at most one token; if all places of a PN are safe, then the PN is
safe. We also note that all transitions are such that for each marking M,
there is a marking M', reachable fram M in which the transition is enabled.
This means that all the transitions in the net are live, hence the PN itself
is live. Liveness is an important property as it guarantees that the PN is

deadlock-free.

Due to the memoryless property of the negative exponential distribution,
the SN 1is isomorphic to a continwus time Markov chain as shown by Moiloy
(MOLLB80]. The state space of the Markov chain can be obtained fram the
reachability set by eliminating those markings that enable an immediate tran-
sition (6i = 00). In the case of the SPN of fig. 29 we must eliminate mark-
ings 2 and 4 that enable t1 and ty respectively, and marking 8 that enables

both. We thus have a 5-state Markov chain that can be represented with the
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Fig. 29 - Stochastic Petri net model of the two-processor system.

Marking Pl P

1 1 01 1 0 0 0
2 0O 0 1 1 0o 1 o
3 1 01 0 0 0 1
4 0 1 0o 1 0 0 o
5 O 0 1 0 o0 1 1
6 1 0 o o 1 0 o
7 0O 1 0 o o o0 1
8 O 0 0o o0 1 1 o

Fig. 30 - Reachability set of the Stochastic Petri net of fig. 29.
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transition diagram of fig. 31, where the state definition is as follows:

(s),8,) (45)
with:
s; = state of processor i

w = active

a = accessing caommon memory

q = queued
The marking that corresponds to the state is also indicated in the figure.
The transition rates are those associated with the transition that has to be
fired in order to go fram one state to the other. In the case of immediate
transitions, we consider the state where the immediate transition is enabled
to coincide with the state resulting fram the firing of the immediate transi-

tion.

onsider a 2x2x2 system, as described in section 5. We can represen*
the behavior of such system using the SPN of fig. 32. The interpretation of
places and transitions is a simple extension fram fig. 29. The transition

rates are:

6, = M2

6y=8 =8 =45=o0

5 =& =n

b =81 =1,

6=\

<58=,\22 (46)
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Fig. 31 ~ Markov chain model of the two-rrocessor system.

Fig. 32 - Stochastic Petri net model of a 2xX2x2 system.

-60-




The reachability set is now shown in fig. 33; 23 markings are possible,
4 are reachable with probability zero, 8 of them enable immediate transitions,
hence the associated Markov chain has eleven states. The construction of the
Markov chain using the rates associated to each transition yields exactly the
chain of fig. 3a. Fram the SN description of the system we can obtain the

Markov chain description presented in the previous sections.

Note that the stochastic Petri net of fig. 32 is safe amd 1live, hence

the system (as modeled) is deadlock-free.

Petri nets have been used to describe and model the synchronization of
events. In the case of multiprocessor systems that exchange messages through
caomnan manories, processors are synchronized in the sense that a message can
be read only after it has been written. As we mentioned in section 3 a pro-
cessor may look for a message in a cammon memory and not find it. Moreover,
the cammon memory area is limited, it can accanodate only a fixed number of
messages (assume that the cammon memory consists of several buffers which can
accanodate one message each). These features of the real system can be in-
cluded in the SPN model rather easily. Oonsider again the simple system of
fig. 28. The message exchange through finite size memories can be modeled ex-
plicitly using the SPN of fig. 34, where the interpretation of places is as

follows:
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P, p, P, P
L P, P3 Py P5 Pg Py PBg Pg P15 Py Py

Marking

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Fig. 33 - Reachability set of the Stochastic Petri net of fig. 32.
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P1(11)
P2(12)
P3(13)
P4(14)
P5(15)
Ps(16)
P7(17)
Pg(9)
P1o

Pi1g

processor 1(2) active

processor 1(2) queued for write

processor 1(2) queued for read

processor 1(2) testing the availability of buffers

processor 1(2) testing the presence of messages

processor 1(2) writing

processor 1(2) reading

messages for processor 1(2)

bus available

buffers in caommon memory

The intermretation of the transitions is:

t1(11)
! £2(12)
t3(13)
t4(14)
%5(15)
%6(16)
Y707
t3(18)
9(19)

10(20)

moc. 1(2)
proc. 1(2)
proc. 1(2)
proc. 1(2)
proc. 1(2)
proc. 1(2)
proc. 1(2)
proc. 1(2)
proc. 1(2)
proc. 1(2)

issues a write request
issues a read request
seizes the bus for write
seizes the bus for read
found no message

found no buffer

found a message

found a buffer

write ends

read ends

i The immediate transitions in the SPN are:

tions of section 3.

tytg byttt tigitig (47)

To all other transitions we can assign finite rates, according to the defini-

The SN is live, thus the system is deadlock-free, but,
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in general, it is not safe, as places Pg: Pqy ard Pig contain more than one to-
ken at a time, unless the common memory consists of a single buffer. The SPN
is however k-bounded, that is, for each marking the number of tokens in any
place of the network is smaller than k, k being the number of buffers avail-
able in the common memory. The k-boundedness of the SPN guarantees that the
reachability set is finite. Since the size of the state space of the
equivalent Markov chain is smaller than or equal to the size of the reachabil-~

ity set, it too is finite.

The Petri net model provides a formal description of the operation of
the system: fram fig. 34 and the interpretation of places and transitions, we

obtain all the information necessary to describe the way the system operates.

The SP¥ is in this case much more camplex than in fig. 29, where we did
ot explicitly model the synchronization between transmitting and receiving
processor, 75 markings are reachable in the single buffer case. Nevertheless,
fram fig. 34, we can obtain a Markov chain that models the behavior of the
system including those features, using the same rules as before. The camplex-
ity of the result limits the applicability of these highly detailed models to

very small systems.
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Exact and approximate analytic results were camnpared by considering a
4x3x2, a 4x4x3 and a 6x4x2 system respectively. The exact chains for the
first two systems are shown in fig. 6 and 8, respectively. The exact chain

for the third system (not shown here) has 37 states.

The results for the 4x3x2 system are presented in fig. 35. fThe first
colunn gives the value of p = }'3 , the second colunn shows the exact value of
processing power as a function of p , evaluated using the exact lumped chain.
The other columns show the percentage error which affects the processing power
value camputed with each of the four approximations introduced in this report.
For this case, the exact chain has 12 states, approximations Al and A2 have 8,

approximation B2 has 10 and approximation C2 has 5 states.

The results for the 4x4x3 system are shown in fig. 36, using the same
format. fThe exact chain has again 12 states, whereas the approximate chains

have 10, 10, 11 and 5 states, respectively.

In fig. 37 the results for the 6x4x2 system are presented. The number

of states are in this case 37, 12, 12, 16 and 7.

A nunber of observations can be made based on these results. Firstly
approximations Al, A2 and B2 seem to yielu upper bounds on the processing
power, whereas C2 gives a lower bound. The upper bound can be intuitively ex-
plained for approximation Al, since the random redistributing of processors to
memories tends to relieve mamory congestion and therefore improve performance.

The bouxds seem to Dbe rather tight, since percentage errors well below 10%
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P exact al A2 B2 c2
.1000e-02  .3996e+0l .00 .00 .00 .00
.1000e-01  .3960e+01 .00 .00 .00 .00
.1000et00  .3604e+01 .02 .04 .00 -.01
+3000e+00  .2892e+01 .30 .53 .04 -.20
.5000e+00  .2338e+01 .84 1.33 .14 -.50
+1000e+01 .1506e+01 2.15 2.95 .50 -1.12

'
.3000et0l  .5806e+00 3.82 4.12 .27 -1.65
.5000e+01  .3559e+00 4.07 4.02 .49 -1.65
.1000e+02  .1804e+Q0 4.13 3.7 .63 -1.58
.1000e+03  .1824e-01 4.06 3.48 .70 -1.45
.1000et04  .1826e-02 4.05 3.44 .70 -1.43

Fig. 35 - Results for the 4x3x2 system.

-67-




P exact Al A2 B2 c2
.1000e-02  .3996e+01 .00 .00 .00 .00
.1000e-01  .3960e+0l .00 .00 .00 .00
.1000et00  .3613e+01 .00 .00 .00 -.18
.3000e+00  .2948e+01 .06 .11 .04 -.82
.5000e+00 - .2440e+01 .25 .42 .15 -1.28
.1000e+01  .165letOl 1.00 1.73 .58 -1.69
.3000et0l  .6847e+00 3.13 5.67 1.78 -1.91
.5000et01  .4280et+00 3.94 7.30 2.23 -2.09
.1000et02  .2203e+00 4.63 8.78 2.63 -2.36
.1000e+03  .2258e-01 5.26 10.25 3.01 -2.77
.1000et04  .2264e-02 5.31 10.40 3.05 -2.83

Fig. 36 - Results for the 4x4x3 system.
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o] exact Al A2 B2 Cc2
.1000e-02  .5994e+01 .00 .00 .00 .00
.1000e~01  .5940et0l .00 .00 .00 .00
.1000et00  .5386e+01 .07 .06 .01 -.39
.3000et00  .4167e+01 .89 .59 .15 -2.24
.5000et00  .3191e+01 1.82 .99 .30 ~-3.45
.1000e+01  .1858e+01 2.52 .89 .28 -3.73
.3000et01  .6513e+00 1.83 .27 .07 -2.75
.5000et01  .3927e+00 1.56 .18 .08 -2.49
.1000e+t02  .1970eH0 1.36 .13 .10 -2.29
.1000e+03  .1974e-01 1.19 .12 .12 -2.10
.1000et04  .1974e-02 1.17 .12 .12 -2.08

Fig. 37 - Results for the 6x4x2 system.
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were tipically observed (except for approximation A2 in the 4x4x3 case).
Tight upper arnd lower bounds are extremely useful, as they allow to determine
a small range in vwhich the exact result must lie, avoiding the camputational

canplexity of the exact problem.

Secondly, we observe that the largest system (6x4x2) shows the gmallest
percentage errors. This may be due to the fact that the rate averaging ép—
proximation gives better results for higher number of states. If the trend of
smaller errors with larger systems were verified for even larger models, then
we could conclude that our approximate models are more than adequate for the

study of large multibus systems.

In order to study the influence of the simplifying assumptions intro-
duced, and to test the performmance of the approximate techniques on larger
systems, a simulation program was written in GPSS. Due to the peculiarities
of the language, same discrepancies are expected between the simulated systems
and the models for which we performed a Markov chain analysis. Nevertheless a
camparison between the analytic and the simulation results shows a very good

agreement. As an example, in fig. 38 results are shown for the 2x2x2 system.

The influence of the simplifying assumptions was studied taking the
6x4x2 system as a benchmark. Exact and approximate analytic results for this
system were shown in fig. 37. First, the impact of memory access time distri—
bution - on system performance is tested. Fig. 39 shows the value of the pro-
cessing power - obtained via simulation - for a 6x4x2 system with fixed mamnory
access time. The fixed access time results are smaller than the exponential
access time results in fig. 37, as is expected fram known results in queueing

theory.
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P analysis simulation

0.01 1.97 1.98
0.1 1.80 1.81
0.3 1.49 1.46
0.5 1.26 1.26
1. 0.89 0.87
3. 0.41 0.39
5. 0.25 0.24
10. 0.13 0.12

Fig. 38 - Camparison of analytic anmd simulation results

for a 2x2x2 system.
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.001
.01

.333

.75

Fig. 39 - Processing power of a 6x4x2 system with

5.9
5.94
5.42
4.14
3.37
2.49
1.95
0.66

0-40

fixed access times.
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Next, the uniform memory reference assunptionv is relaxed by assuming
that access requests fram any processor are directed to memory 1 with proba-
bility d, and are uniformly distributed among all other menories. That is, we

set:

Pil =d all i
_1-d s
Pij_m—l all i, 3=2,...,m

The results are reported in Fig. 40. We can see that the value d = 1/m is the
one that maximizes the processing power. This result was expected, since high
values of d imply that one memory is the bottleneck of the system, vwhereas low
values of d mean that the accesses are mainly directed to three mamories.

Both situations increase memory contention and thus decrease  system

throughput .

The increase in efficiency gained by varying the the number of busses
was also analyzed. Fig. 41 shows simulation results for a 6-processor, 4-
manory system using a number of busses varying fran 1 to 4. The increase in
processing power is negligible for low values of p, but becomes very signifi-
cant for heavily loaded systems. In the latter case the increase in perfor-

mance clearly shows a "diminishing return" behaviour.

Finally, a 16-processor, 8-mamnory, 3-bus system was simulated, in order
to test the accuracy of the approximate models for large system size. Results
are shown in fig. 42. The approximate Markov chains of models Al and C2, hav-
ing 46 and 17 states respectively, were solved. The results show that the ap-
proximate models behave very well for a system of this size; indeed, the ap-

proximate results are so close to the simulation results that they fall within
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P .01 .1 .25 .5 .75 .9 .99

.001 5.994 5.994 5.994 5.994 5.994 5.994 5.994
.01 5.939 5.940 5.940 5.939 5.938 5.937 5,937
.1 5.367 5.379 5.388 5.368 5.268 5.219 5.165
.333 3.903 3.966 4.001 3.818 3.365 3.119 2.823
.5 3.103 3.151 3.178 3.014 2.488 2.186 1.977
.75 2.311 2.313 2.358 2.172 1.704 1.461 1.351
1. 1.787 1.829 1.874 1.699 1.312 1.093 0.995
3. 0.633 0.636 0.641 0.584 0.441 0.378 0.339
5. 0.380 0.384 0.390 0.354 0.262 0.224 0.205

Fig. 40 -~ Processing power of a 6x4x2 system with non wniform

memory reference (values of d in the top row).
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P 6x4x1 6¥4x2 6x4x3 6x4x4
.001 5.99 5.9 5.99 5.99
.0l 5.94 5.94 5.94 5.94
.1 5.16 5.39 5.39 5.39
.3 2.9 4.00 4.11 4.12
.5 1.98 3.18 3.35 3.41
1. 1.02 1.87 2.16 2.16
3. 0.33 0.64 0.81 0.83
5. 0.2 0.40 0.50 0.50
10. 0.10 0.19 0.25 0.26

-76-

Fig. 41 ~ Processing power of a 6-processor, 4-memory
system when the number of busses is varied.
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P simulation Al c2

.001 - 15.98 15.98 15.98
01 15.84 15.84 15.83
.1 14.24 14.27 13.89
.333 8.59 8.73 8.20
.5 6.01 5.9 5.79
1. 2.9 2.9 2.97
3. 1.01 1.00 0.9
5. 0.60 0.60 0.60
10. 0.30 0.30 0.30

Fig. 42 - simulation and approximate analytic results

for a 16x8x3 system.
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the simulation confidence interval. Moreover, since the system of linear
equations associated with the approximate Markov chain can be easily solved
with numerical methods, the approximate models require much less camputer time A

than a simulation program.
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APPENDIX 1

In this appendix we give expressions for the transition rates of the ap-

proximate Markov chain of model Al in the general case of a pxmxb system.

Consider that, given that we are in state (i,j), transitions can occur

to at most four neighboring states:

(i+1,3) (i-1,3) (4i,3+1) (i,3-1) (Al.1)

and we denote such transitions, respectively, with the notation

i==>itl  i-=di-1 =21 Je=>j-1 (m.2)
Using the simplifications introduced we associate to these transitions the

following rates:

R(i -> i¥l) = (p-i-j) \ &2 o® (A1.3)
® m p-i-3»0 :
|
I S
R(i -> i-1) = :
Ib-113 ‘o
N =
| (A1.4)
| .
} (p-i-9) %,\ i<b, p-i-j»0
R(j -> 3 = . . .
(3 1) } (p-b-3) \ i=b, p-b-0
(A1.5)
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APPENDIX 2

In this appendix we give expressions for the number of states at lewel 1

of the exact lumped chain in the case of a pxmx2 system.

We want to count the number of states that show same properties in order
t0 evaluate the transition rates of the approximate Markov models using the

averaging technique introduced in section 7.

The level of a state is defined as the difference between the total

number of processors and the number of active processors.

At levels 0 and 1 there is only one state, at level 2 there are two

states, one with one processor accessing cammon mamory ard one with two.

For 1>3 we know that we have one state with n =1 (see eq. 15), but we do
not know how many states exist with n =2. The number of such states can be
svalwmted by applying same results in combinatorial analysis.

Define the numbers pk(n) by the recurrent relation

pk(n) = pk(n-k) + pk_l(n—k) + ...+ pl(n—k) + po(n—k) (A2.1)
with
pK(n) =0 n<k , k<0
Py(n) 0 (A2.2)
p (k) =1 x>0

Note that pk(n) is the number of unordered partitions of n into k parts, with

k and n integers.
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Now we can state that the number of states at level 1=K+2, 1>3, such

that n =2 in a pxnx2 system is:

=

= 3 l 3 -} l
n{m, 2,k) 2 lpz(_')-l-z) pm_z(k J+m—2)| » k<p-2 (A2.3)
0
Out of this number, same states will be such that no processor is queueing for

a bus to reach a free memory. The number of these states is:

no(m,Z.k) = pb(k+2) , k<p-2 (A2.4)

On the contrary the number of states such that some processor is queueing for
a bus is:
k-1

ny (m,2,k) = jfo }pz(}'-z) pm_z(k—j+m-2)} » k¢p-2

(A2.5)
Finally, the number of states at level 1l=k+2, 1>3 with some processor queueing
for a bus (if more than one then all processors queueing for the same memory

module) and at least one queue for the busy memories empty, is:

k-1

n, (m,2,k) = Jzo P (1) =k o KEp-2 (A2.6)

In the particular case of three memories (m=3) the above results can be

put in polynamial form:

|

| .2

| ‘—Z—+k+% K odd
n(3,2,x) = |

I 2

| T+k+1 k even

|

(A2.7)
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